Duality cascades and affine Weyl groups

نویسندگان

چکیده

A bstract Brane configurations in a circle allow subsequent applications of the Hanany-Witten transitions, which are known as duality cascades. By studying process cascades corresponding to quantum curves with symmetries Weyl groups, we find hidden structure affine groups. Namely, fundamental domain consisting all final destinations is characterized by chamber and realized translations group, where overall rank brane configuration associates grading operator algebra. The group guarantees finiteness processes uniqueness endpoint In addition original cascades, can generalize cases Fayet-Iliopoulos parameters. There utilize analyze similarly that continues be chamber. We further interpret impose “half” transition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Commutative Elements in the Weyl and Affine Weyl Groups

Let W be a Weyl or affine Weyl group and let Wc be the set of fully commutative elements in W . We associate each w ∈ Wc to a digraph G(w). By using G(w), we give a graph-theoretic description for Lusztig’s a-function on Wc and describe explicitly all the distinguished involutions of W . The results verify two conjectures in our case: one was proposed by myself in [15, Conjecture 8.10] and the ...

متن کامل

Excedances in classical and affine Weyl groups

Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type B̃n, C̃n and D̃n and determine the generating functions of their distributions. This paper is inspired by one of Clark and Ehrenbo...

متن کامل

Extended affine Weyl groups and Frobenius manifolds

We define certain extensions of affine Weyl groups (distinct from these considered by K. Saito [S1] in the theory of extended affine root systems), prove an analogue of Chevalley theorem for their invariants, and construct a Frobenius structure on their orbit spaces. This produces solutions F (t1, . . . , tn) of WDVV equations of associativity polynomial in t1, . . . , tn−1, exp tn.

متن کامل

Left Cells in Affine Weyl Groups

We prove a property of left cells in certain crystallographic groups W , by which we formulate an algorithm to find a representative set of left cells of W in any given two-sided cell. As an illustration, we make some applications of this algorithm to the case where W is the affine Weyl group of type e F4. The cells of affine Weyl groups W , as defined by Kazhdan and Lusztig in [6], have been d...

متن کامل

Affine Weyl Groups as Infinite Permutations

We present a unified theory for permutation models of all the infinite families of finite and affine Weyl groups, including interpretations of the length function and the weak order. We also give new combinatorial proofs of Bott’s formula (in the refined version of Macdonald) for the Poincaré series of these affine Weyl groups. 1991 Mathematics Subject Classification. primary 20B35; secondary 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2022

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep05(2022)132